A multilevel successive iteration method for nonlinear elliptic problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multilevel successive iteration method for nonlinear elliptic problems

In this paper, a multilevel successive iteration method for solving nonlinear elliptic problems is proposed by combining a multilevel linearization technique and the cascadic multigrid approach. The error analysis and the complexity analysis for the proposed method are carried out based on the two-grid theory and its multilevel extension. A superconvergence result for the multilevel linearizati...

متن کامل

Global Inexact Newton Multilevel FEM for Nonlinear Elliptic Problems

The paper deals with the multilevel solution of elliptic partial differential equations (PDEs) in a finite element setting: uniform ellipticity of the PDE then goes with strict monotonicity of the derivative of a nonlinear convex functional. A Newton multigrid method is advocated, wherein linear residuals are evaluated within the multigrid method for the computation of the Newton corrections. T...

متن کامل

Local Inexact Newton Multilevel FEM for Nonlinear Elliptic Problems

The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton’s method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavi...

متن کامل

Analysis of radial basis collocation method and quasi-Newton iteration for nonlinear elliptic problems

This work presents a global radial basis collocation combining with the quasiNewton iteration method for solving semilinear elliptic partial differential equations. A convergence analysis for such a meshfree discretization has been established. The main result is that there exists an exponential convergence rate with respect to the number and the shape of the radial basis functions. In addition...

متن کامل

An adaptive multilevel wavelet collocation method for elliptic problems

An adaptive multilevel wavelet collocation method for solving multi-dimensional elliptic problems with localized structures is described. The method is based on multi-dimensional second generation wavelets, and is an extension of the dynamically adaptive second generation wavelet collocation method for evolution problems [Int. J. Comp. Fluid Dyn. 17 (2003) 151]. Wavelet decomposition is used fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2003

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-03-01566-7